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Abstract
We investigate quantum dynamical systems defined on a finite-dimensional
Hilbert space and subjected to an interaction with an environment. The rate
of decoherence of initially pure states, measured by the increase of their
von Neumann entropy, averaged over an ensemble of random pure states,
is proved to be bounded from above by the partial entropy used to define the
ALF-dynamical entropy. The rate of decoherence induced by the sequence
of the von Neumann projectors measurements is shown to be maximal, if the
measurements are performed in a randomly chosen basis. The numerically
observed linear increase of entropies is attributed to free independence of the
measured observable and the unitary dynamical map.

PACS numbers: 03.65.Yz, 05.45.Mt

1. Introduction

The notion of chaos in classical mechanics is well established, and any dynamical system
characterized by positive Kolmogorov–Sinai (KS) entropy is called chaotic [1]. On the other
hand, it is not at all easy to generalize the definition of chaos for quantum theory [2, 3]. There
exist numerous attempts to define the quantum counterpart of the Kolmogorov–Sinai entropy
both for finite and infinite quantum systems (see [4] and references therein). However, only
two of them, CNT entropy [5] and ALF entropy [6], provide nonequivalent notions of quantum
dynamical entropy which satisfy the following conditions:

(1) they can be formulated in an abstract algebraic framework valid for general commutative
(classical) and noncommutative (quantum) dynamical systems,

(2) they coincide with the Kolmogorov–Sinai entropy when applied to classical systems, and
(3) they can be rigorously computed for several examples on noncommutative dynamical

systems (different types of quantum shifts, automorphisms of quantum tori, fermionic
quasi-free systems).
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In contrast to the coherent-states quantum entropy defined in [4, 7], both CNT and ALF
entropies are always equal to zero for quantum systems with finite-dimensional Hilbert spaces.
In particular this concerns the systems being quantizations of classically chaotic dynamical
systems defined on a compact phase space, we are going to analyse in this work. For the
case of ALF entropy we can easily understand the mechanism leading to the apparent lack
of ‘correspondence principle’ for the KS entropy. In fact we can see that classical–quantum
correspondence exists provided the proper order of limit procedures is used. Recently this
problem has been studied rigorously for both CNT and ALF entropies in the case of quantized
Arnold cat maps [8].

A typical quantum state coupled with an environment suffers decoherence, i.e. a generic
pure state becomes mixed as a result of the non-unitary dynamics. As shown by Zurek
and Paz [9], the initial rate of decoherence is governed by the classical dynamical entropy h.
Vaguely speaking, any classical density evolving in a two-dimensional phase space of a discrete
invertible chaotic map T, is squeezed along the stable manifold and simultaneously stretched
along the unstable manifold with the rate determined by the classical Lyapunov exponent λ.
In a similar way the corresponding quantum wave packet is stretched. So in a generic case,
it becomes coupled with an exponentially increasing number of states localized in the phase
space. A natural assumption that these states are distinguishable by the environment implies
the initially linear growth of the von Neumann entropy of a typical pure state, with the slope
given by h[T ].

Detailed investigation of the rate of decoherence in various setups is a subject of
considerable recent interest [10–18]. The main aim of this work is to establish a more precise
relation between the Kolmogorov–Sinai entropy of the classical system and an increase of the
average von Neumann entropy. We analyse the decoherence in finite quantum chaotic systems
subjected to the sequence of periodical measurement process and establish a link between
the rate of decoherence and the partial entropy used for the definition of the ALF entropy. The
latter becomes equal to KS entropy in the classical limit. It is shown that such a correspondence
is valid only if the measurement process possesses a well-defined classical limit, while in
the case of a randomly chosen measurement the decoherence rate is governed by some global
bounds essentially independent of the dynamics of the system.

The paper is organized as follows. In section 2 we recall the definition of the ALF quantum
dynamical entropy. In section 3 we discuss the semiclassical limit of quantum maps and in
section 4 analyse the classical limit of the ALF entropy. In section 5 we analyse the rate
of decoherence and provide the upper bound (31) for the time evolution of the mean von
Neumann entropy, averaged over the set of random initial pure states. These general results
are used in section 6 by studying the decoherence in a model system: a periodically measured
quantum baker map. Discussion of the results obtained in the context of the free-independent
variables is provided in section 7.

Analysing the classical limit of the ALF entropy we found it convenient to make use of the
standard C∗ algebraic formalism and the notation common in papers on mathematical physics.
On the other hand, we tend to believe that our work might also be useful for a reader working
merely on decoherence in quantum systems and not interested in free random variables nor in
subtle differences between various approaches to quantum dynamical entropy. A member of
such a potential audience is kindly advised to learn about the model studied in the second part
of section 3, and then proceed directly to section 6. Our numerical results presented here in
figures 1 and 2 clearly illustrate the main message of the work. The initial rate of decoherence
in a quantum system is governed by the degree of chaos of the corresponding classical system.
This is the case if the measurement (Kraus) operators, which describe the coupling of the
quantum system with an environment, possess a well-defined classical limit.
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2. ALF-dynamical entropy

The original definition of the ALF-dynamical entropy [3, 6] contains an infinite time limit
procedure for the entropy production which is meaningful for the infinite quantum systems
described in terms of C∗ algebras only. In this paper, similar to [19], we consider a finite
quantum system described by d-dimensional Hilbert space C

d and the time dependence of
the entropy production up to the saturation time of the order of ln d. We use the discrete-time
evolution given by the unitary d × d matrix U and the ‘maximally mixed’ reference state
ρ� = 11/d. The first step in the ALF construction is the transition to the doubled quantum
system described by the Hilbert space C

d ⊗ C
d , and the purification of the state 11/d given by

the ‘maximally entangled’ state on C
d ⊗ C

d denoted by |�〉. This state can be represented in
the following way. Take the set E of pure states {|α〉 : 〈α|α〉 = 1} in C

d equipped with the
(discrete or continuous) probability measure dα and satisfying∫

E
dα|α〉〈α| = 1

d
11 (1)

which will be called the complete set of vectors. The natural examples of E are orthonormal
basis or coherent states generated by the irreducible representations of certain compact Lie
groups on C

d . The distinguished example is the set of all pure states Pd = CP d−1 with
the natural unitary invariant probability measure (Fubini–Study measure). The most general
representation of maximally entangled vectors in terms of complete sets reads

G ↔ |�G〉 =
√

d

∫
E

dα|α〉 ⊗ |Gα〉 (2)

where the antiunitary map G on C
d completely determines the vector |�G〉 irrespective of the

complete set E . It can be proved by taking two complete sets E , E ′ and two antiunitary matrices
G,G′. Define |�G〉 by (2), put |�G′ 〉 = √

d
∫
E ′ dβ|β〉⊗ |G′β〉 and compute the scalar product

〈�G′ |�G〉 = d

∫
E

dα

∫
E ′

dβ〈β|α〉〈G(G−1G′)β|Gα〉 =
∫
E ′

dβ〈β|(G−1G′)β〉 (3)

equal to one if and only if G = G′.
The second step consists in taking a partition of unity X = {X1, X2, . . . , Xk}, where

Xj, j = 1, . . . , k denote matrices of size d, which satisfy
∑k

j=1 X
†
jXj = 11. Such a partition

describes an ‘unsharp measurement’ performed on the system. We shall use the same notation
for the partition X extended trivially to the composed bi-partite system.

Partitions of unity can be composed, X ◦ Y = {XjYm}, and evolved in time U(X) =
{UXjU

†} to produce finer partitions, Xt = U t−1(X) ◦ · · · ◦ U(X) ◦ X. We use the following
notation for the multi-time correlation matrices given by

σ [Xt ]i1,...,it ;j1,...,jt
= 〈

�
∣∣X†

j1
U

(
X

†
j2

)
. . .U t−1(X†

jt

)
U t−1(Xit

)
. . .U

(
Xi2

)
Xi1�

〉
= 〈

�
∣∣X†

j1
U †X

†
j2
U † . . . X

†
jt
Xit . . . UXi2UXi1�

〉
. (4)

Here σ [Xt ] is a positively defined, kt × kt complex-valued matrix with its trace equal to unity.
By St [X, U ] we denote the von Neumann entropy

St [X, U ] = −Tr(σ [Xt ] ln σ [Xt ]). (5)

For any partition of unity X, one can introduce the corresponding dynamical map 	X in the
Schrödinger picture (we use the same notation for the map acting on the system or for its
trivial extension to its doubled version)

ρ 	→ 	X(ρ) =
k∑

j=1

XjρX
†
j . (6)
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This map transforms an arbitrary density operator ρ into another density operator. Iterating
the state |�〉〈�| t-times by the map 	UX we obtain

�[Xt ] = [	UX]t (|�〉〈�|) (7)

where UX = {UX1, UX2, . . . , UXk}.
We have the equality

St [X, U ] = −Tr(�[Xt ] ln �[Xt ]). (8)

The formula above gives a new interpretation of St [X, U ] as the entropy of the density matrix
obtained by repeated measurements performed on the evolving composed system with the
initial pure entangled state |�〉.

Equality (8) follows from the fact that the spectrum of the operator
∑k

j=1 |j 〉〈j | is identical
(including degeneracies) to the spectrum of the k × k matrix [〈i|j 〉], except for the irrelevant
eigenvalues equal to zero.

According to the original definition of ALF-dynamical entropy one should compute the
asymptotic rate of the entropy production limt→∞ 1

t
St [X, U ] and finally take a supremum over

all physically admissible partitions of unity. Since for any finite quantum system the entropy
St [X, U ] is limited

St [X, U ] � min{t ln k, d} (9)

the asymptotic rate of the entropy production gives zero, independently of the investigated
unitary dynamics U. Hence the ALF-dynamical entropy will always be zero for finite systems.
On the other hand, one may analyse the initial rate of the entropy St , which at small times
(of order of ln t) was shown [19] to be determined by the classical entropy h.

3. Classical limit of quantum maps

Consider a classical dynamical system with a compact (reduced) phase space 
 equipped
with the probability measure dγ . This measure is assumed to be invariant with respect to
the dynamical map γ 	→ T (γ ). We say that this system (
, T , dγ ) is a classical limit of the
sequence of quantum systems if:

(a) there exists a sequence (Cd(n), Un; n = 1, 2, . . .) of d(n)-dimensional Hilbert spaces and
d(n)×d(n)-unitary matrices,

(b) there exists a quantization procedure which with any real function f (γ ) (usually satisfying
some smoothness properties) associates the sequence of self-adjoint operators F (n) acting
on C

d , and
(c) for any set of observables f1, f2, . . . , fk and any sequence of time steps t1, t2, . . . , tk the

correlation functions converge,

lim
n→∞

1

d(n)
Tr

(
Ut1

n F
(n)
1 U−t1

n Ut2
n F

(n)
2 U−t2

n · · ·Utk
n F

(n)
k U−tk

n

)

=
∫




dγf1(T
t1(γ ))f2(T

t2(γ )) · · · fk(T
tk (γ )). (10)

Both the quantization procedure fj 	→ Fj and the choice of Un are not unique. The maximally
mixed states ρ� correspond to the uniform normalized measure dγ . The example of such a
structure has been rigorously studied for the Arnold cat maps in a recent paper [8].

To present an example of a family of quantum maps, corresponding to certain classical
system, we are going to recall the construction of the quantum baker map, originally due to
Balazs and Voros [20], and modified later in [21–23]. The classical baker map is defined as a
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transformation of a unit square, the compact phase space 
 with the coordinates q (position)
and p (momentum),


 � γ = (q, p) → TB(γ ) = (2q − [2q], (p + [2q])/2) ∈ 
 (11)

where [2q] denotes the integer part of 2q. This map is hyperbolic and its Kolmogorov–Sinai
entropy is equal to ln 2. Such a transformation may be quantized in a finite Hilbert space
C

d . In an ordered orthonormal basis named position eigenbasis {ej } we introduce a periodic
translation operator

Uej = ej+1 j = 1, . . . , d − 1 Ued = e1. (12)

Diagonalization of U leads to the conjugated basis—momentum eigenbasis {ẽk},
Uẽk = exp(2π ik/d)ẽk. (13)

Analogously to (12) the translation operator in the momentum eigenbasis is introduced,

V ẽk = ẽk+1 V ẽd = ẽ1 k = 1, . . . , d − 1. (14)

This operator is diagonal in the position eigenbasis,

V ej = exp(−2π ij/d)ej (15)

and the transformation between position and momentum basis is given by the discrete Fourier
transform Fd ,

ẽk =
∑

j

[Fd ]kj ej =
∑

j

1√
d

e−2π ikj/dej . (16)

Having defined the group of translation operators corresponding to a classical torus it is
possible [20–22] to link the unitary operator

UB = (Fd)
−1 ·

(
Fd/2 0

0 Fd/2

)
(17)

acting on C
d , where d is an even integer (e.g. d = 2n), to the classical transformation defined

by equation (11). The translation operators also allow one to define a finite-dimensional
operator corresponding to any classical observable described by a continuous function f on

. Let us define the Fourier expansion of f ,

f (q, p) =
∑
j,k

ajk e−2π ijq/d e2π ikp/d . (18)

Thus the operator F (n) corresponding to observable f may read as follows:

F (n) =
∑
j,k

ajkV
jUk. (19)

As mentioned above, the quantization procedure is not unique. Another set of operators
F (n) may be obtained if we use different ordering of translation operators, since they do not
commute, UV = V U e2π i/d . It is also possible to generalize the whole quantization procedure
by introducing translation operators, which are not exactly periodic, but periodic up to a phase
factor (e.g. Ud = e2π iχp/d11, V d = e2π iχq/d11) [21, 23].

Different properties of such a quantum baker map were studied in [20–23], and the
correspondence with the classical system (11) was established. Although we cannot provide
a formal proof that the quantization (17) satisfies the property (10), we are going to use this
model in further numerical investigations. The very same model has been recently applied by
Scott and Caves [24], who interpreted the entire system as a set of subsystems and studied the
increase of their von Neumann entropy as a measure of entanglement between them.
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4. Correspondence principle for dynamical entropy

For any finite-dimensional quantum system inequality (9) holds, so the quantum dynamical
entropy h[U ] = 0. This fact is sometimes interpreted as the lack of correspondence principle
for dynamical entropy. In section 3 we defined a family of quantum maps, parametrized
by an integer index n, such that in the semiclassical limit n 	→ ∞ the dimension d(n)

becomes infinite. Taking a sequence of quantum systems (Cd, Un) with the classical limit
(
, T , dγ ) in the sense defined above by equation (10), we may start with a functional partition
of unity f = {f1, f2, . . . , fk;

∑
j |fj (γ )|2 = 1} and construct its quantum counterparts

Fn = {
F

(n)
1 , F

(n)
2 , . . . , F

(n)
k

}
using a suitable quantization procedure. The entropy St [Fn, Un]

is computed using equation (5),

�
[
Ft

n

] = [
	UnFn

]t
(|�n〉〈�n|) (20)

where

|�n〉 = 1√
d

d∑
m=1

|em〉 ⊗ |e′
m〉 {|em〉}, {|e′

m〉} basis in C
d (21)

is the purification of the tracial state 11/d of the system given in terms of the maximally
entangled vector in C

d ⊗ C
d . Then according to equation (10)

St [f, T ] = lim
n→∞ St [Fn, Un] (22)

the classical dynamical entropy of the partition can be recovered by taking first the classical
limit n → ∞ and then the long time limit t → ∞. Usually for a given classical system
with the KS entropy h[T ] there exist many ‘optimal partitions’ f with ln k � h[T ] for which
St [f, T ] ≈ t · h[T ] with a given accuracy or even exactly (generating partitions, Markovian
partitions [6]). Therefore, we can expect that for large enough n and the optimal choice of the
partition f the entropy St [Fn, Un] displays linear growth with the rate given by the KS entropy
h[T ] for t below tmax = 2 ln d/h[T ], and then saturates at the maximal value 2 ln d. For the
regular dynamics T with h[T ] = 0 we expect a slower (logarithmic) increase of St [Fn, Un] up
to the maximal value.

5. Entropy production as a measure of decoherence

For a generic quantum system S interacting with an environment (e.g. measuring apparatus)
its initial pure state becomes mixed due to the increasing system–environment entanglement.
Assuming that the reduced dynamics is given by a completely positive map (6), to measure
the decoherence we may use the von Neumann entropy

E[X, α] = S(	X(|α〉〈α|)) = S(σα[X]) (23)

where |α〉 ∈ HS is an initial pure state of the system and σα[X] is k × k correlation matrix
with (ij) element 〈α|X†

jXi |α〉. We extend this construction to the case of a discrete-time
finite quantum dynamical system with the unitary evolution U interrupted by a measuring
process (or generally interaction with an environment) described by the partition of unity X
or equivalently by

Et [X, U, α] = S([	UX]t (|α〉〈α|)) = S(σα[Xt ]). (24)

The quantity above, bounded by ln(dimHS), can be strongly dependent on the initial state of
the system.



Quantum dynamical entropy and decoherence rate 5163

Assume now that the system S is finite, i.e. HS = C
d . In order to obtain a more universal

measure we can average the entropy over a complete set E of pure states {|α〉} . The entropy
averaged with respect to E is equal to

Et [X, U, E] =
∫
E

dαEt [X, U, α] � ln d (25)

and its increase (entropy production) characterizes the magnitude of the decoherence process.
Since the entropy Et is bounded from above, its asymptotic production rate, Et/t , tends

to zero for t → ∞. On the other hand, we will be interested in the initial production rate.
Studying a discrete dynamics we cannot define the derivative dEt/dt , but we may, for instance,
study the entropy produced after each initial time step. Analysing the trivial dynamics, U = 11,
and the measurement process governed by projection orthogonal operators, Xj = Pj = (Pj )

2,
the entropy is produced only once, and Et = E1 for all t > 0. Therefore, to characterize in
this situation the unitary dynamics, and not the measurement process itself, we are going to
use the quantity �E = E2 −E1. For comparison we define the initial production of the partial
ALF entropy, �S = S2 − S1.

Defining the ALF entropy, which characterizes the unitary evolution U, one uses the
supremum over all operational partitions of unity. Let us emphasize that there is no point
in performing such a step by studying the initial decoherence rate �E. Since the set of
transformed operators, Pj → P ′

j = PjV (P = {P1, . . . , Pk}) with arbitrary unitary V is also a
valid identity resolution, then Et [P, U, E] = Et [P′, V U, E] so the supremum over all possible
measurements will be independent of the unitary dynamics U studied.

It follows from equations (5) and (7) that the time-dependent entropy St [X, U ], which
appears in the definition of the ALF entropy and in the semiclassical regime is related to
the KS entropy, describes also the magnitude of a certain decoherence process. However,
this process involves a maximally entangled state of the composed doubled system while
the natural decoherence measure should be defined in terms of the system alone, such as
Et [X, U, α] or Et [X, U, E].

In order to compare both entropies Et [X, U, E] and St [X, U ] we need the following
technical result.

Take the dynamical map 	Y defined by the k-elements partition of unity Y =
{Y1, Y2, . . . , Yk} as in (6) and an arbitrary complete set of vectors E . We use the notation
σα[Y] and σ [Y] for the k × k correlation (density) matrices with matrix elements 〈α|Y †

j Yi |α〉
and 1

d
Tr

(
Y

†
j Yi

)
, respectively. We introduce also the tracial norm ‖A‖1 = Tr[(AA†)1/2] and

the Hilbert–Schmidt norm ‖A‖2 = [Tr(AA†)]1/2 for a matrix or an operator A and the entropy
function η(x) = −x ln x.

Theorem 1.

A � S(σ [Y]) −
∫
E

dαS(σα[Y]) � B (26)

where

A =
∫
E

dα(‖σ [Y] − σα[Y]‖1 ln k + η(‖σ [Y] − σα[Y]‖1)) (27)

B = 1
2 max

{∫
E

dα(‖σ [Y] − σα[Y]‖1)
2,

∫
E

dα(‖σ [Y] − σα[Y]‖2)
2

}
. (28)

Proof. We use the inequalities for the relative entropy [2, 3, 27]

S(ρ|ω) = Tr(ρ ln ρ − ρ ln ω) � 1
2 max

{‖ρ − ω‖2
1, ‖ρ − ω‖2

2

}
. (29)
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Putting ρ = σα[Y], and ω = σ [Y] = ∫
E dασα[Y] and averaging over dα we obtain the lower

bound (28). The upper bound (27) follows directly from the Fannes inequality [3, 5],

|S(ρ) − S(ω)| � (‖ρ − ω‖1 ln(dimH) + η(‖ρ − ω‖1) (30)

which ends the proof. �

A basic consequence of theorem 1 is the inequality

2 ln d � St [X, U ] � Et [X, U, E] � ln d (31)

which provides an upper bound for the mean von Neumann entropy, averaged over a complete
set E of random initial pure states. If E is taken to be the entire set of pure states, the averaging
is performed with respect to the natural, unitarily invariant (Fubini–Study) measure on space
Pd = CP d−1. This strict bound may be considered as one of the key results of the present
work.

Furthermore, theorem 1 implies that St [X, U ] = Et [X, U, E] if and only if σα[Xt ] =
σ [Xt ] for almost all α (except for a set of measure zero). Numerical results show that for
small times both quantities are comparable St [X, U ] � Et [X, U, E]. We are going to provide
some arguments in favour of this behaviour in the case E = Pd .

Consider the fluctuations of the matrix elements of the k × k matrix σα[Y] treated as
random variables with respect to the uniform measure over the set of all pure states Pd .
Deviation of a matrix element from its average is given by

δ = |〈ξ |σα[Y] − σ [Y]|ξ 〉| (32)

where |ξ 〉 is an arbitrary normalized vector from C
k . The expectation value of the operator

σα[Y] is equal to

〈ξ |σα[Y]|ξ 〉 = 〈α|
∑
ij

ξ̄j ξiY
†
j Yi |α〉. (33)

The positive operator B = ∑
ξ̄iξjY

†
i Yj < 11, i.e. for any normalized vector |φ〉 ∈

C
d , 〈φ|Bφ〉 � 1. So, it can be written in the form of the sum of projectors into its eigenvectors

|�〉, i.e. B = ∑
l bl|�l〉〈�l| (0 � bl � 1). Let αl denote coefficients of the random

normalized state |α〉 with respect to the eigenvectors of the operator B, and finally

δ =
∣∣∣∣∣
∑

l

bl

(
|αl|2 − 1

d

)∣∣∣∣∣ . (34)

The numbers (|αl|2 − d−1) take positive and negative values of the order d−1 but sum up
to zero. However, when multiplied by another random variable bl ∈ [0, 1] they behave like
‘steps of the random walk’ yielding a sum of the order

√
d × d−1 and hence

δ � 1√
d

. (35)

Therefore, the fluctuations of the norm ‖σ [Y] − σα[Y]‖1 behave like k/
√

d .
In the time-dependent case it means that for kt � d we have St [X, U ] � Et [X, U, E].

Moreover a random choice of |α〉 ∈ Pd gives typically S(σα[Xt ]) � Et [X, U,Pd ].
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Figure 1. Initial growth of entropies St [PP, U ] (◦) and Et [PP, U,Pd ] (×) computed for baker
map U = UB ((a), (c) and (e)) and its square U = U2

B ((b), (d ) and ( f )) where partition PP

corresponds to the division of classical phase space into k = 2 ((a) and (b)), k = 4 ((c) and (d )),
k = 8 ((e) and ( f )) equal intervals in momentum coordinate.

6. Decoherence in a periodically measured baker map

To illustrate the results presented in the previous section on a concrete example we analyse
the quantum baker map (17) subjected to a periodic sequence of measurements performed
in the momentum basis. The entire, non-unitary dynamics of the system is described by the
superoperator

ρ ′ =
k∑

j=1

P P
j UρU †P P

j . (36)

The set PP of k projection operators fulfils the identity resolution,
∑

j P P
j = 11, since the

measurement process corresponds to the partition of phase space into k equal intervals in
momentum,

P =

P P

j : P P
j =

jd/k∑
i=(j−1)d/k+1

|ẽi〉〈ẽi |

 , (37)

where ẽi are the momentum eigenstates defined by (13) in C
d , and the size d of the Hilbert

space is an integer multiple of k.
Iterating numerically quantum map (36) we compute how both entropies St [X, U ] (7) and

Et [X, U,Pd ] (25) vary in time. Figure 1 presents the initial growth of the entropy St [PP, U ]
and Et [PP, U,Pd ]. As the evolution operator U we took the quantum baker map UB defined
by (17), panels (a), (c) and (e), or its square, U 2

B , panels (b), (d ) and ( f ). The partition PP is
composed of k = 2, 4, 8 projection operators. The entropy Et is averaged over a sample of
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Figure 2. As in figure 1((e) and ( f )) with k = 8 for the measurement in a random basis PR.

32 random initial pure states, chosen according to the Fubini–Study measure. To guide the
eye we plotted solid lines corresponding to the entropy growth with the rate of the classical
KS entropy, equal to ln 2 in cases (a), (c) and (e) and 2 ln 2 in cases (b), (d ) and ( f ). The
slope of the dashed lines is equal to the maximal allowed growth of entropies, equal to ln k.
Aiming for the semiclassical regime, we have taken the maximal dimensionality of the Hilbert
space which was allowed by the computer resources at our disposal. In order to compute the
entropy St one has to diagonalize matrices of size d2, so we could work with matrices of size
d = 64 = 26. To obtain the entropy Et one needs to study the time evolution of density
operators acting on Hd , so we succeed in working with systems of the size d = 512 = 29.
The entropy Et obtained for d = 64 is smaller than St according to the analytical bound
(31). As discussed in [26] the size d of the Hilbert space determines only the saturation level
(Et (t → ∞)), but does not influence the initial entropy rate. If the measurement scheme is
tuned to the classical dynamics, i.e. cases (a) and (d ), the rate of the initial growth of both
entropies coincides with the classical dynamical entropy h[T ] of the map which is equal to
ln 2 for the baker map, and 2 ln 2 for its square.

We expect that the quantization property (10) holds for the classical (11) and quantum
(17) baker maps, although this statement still awaits a formal proof. On the other hand, our
numerical results, consistent with (22), may be treated as an argument supporting such a
conjecture.

If the resolution of the measurement is not sufficient—see case (b), the classical chaos
cannot fully manifest itself and �E and �S are smaller than h[T ], and equal to ln k. In the
opposite case, see panels (c), (e) and ( f ), a finer resolution of the measurement (ln k > h[T ])
allows for the decoherence with a rate faster than can be expected from the classical dynamical
entropy. Hence such a measurement can be responsible for entropy production faster than
may be predicted based on the degree of classical chaos. As visible in panel (e) this effect is
larger for the entropy St .

To demonstrate other features of the measurement process we investigated the time
dependence of both entropies St [PR, U ] and Et [PR, U,Pd ] for different choices of the
partitions PR. Figure 2 shows the initial growth of both entropies calculated with the same
evolution operators as in figure 1. However, the partition PR was obtained by rotating
the projective partition PP by a random unitary matrix V , namely P R

j = V P P
j V †, for all

j = 1, . . . , k. The label R decorating the symbol PR of the partition emphasizes the fact that
the measurement is performed in a random basis. Such a measurement will give k different
results with equal probabilities Tr

(
P R

j

)/
d = 1/k. In figure 2 both entropies initially increase

with a nearly maximal slope which is equal to ln k = ln 8 (dashed line). Unitary evolution
operator U does not influence the behaviour of either entropy, and the data presented in plots
(a) and (b) hardly differ.
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The fact that the rotated partitions lead to an almost maximal allowed growth of both
entropies may be explained by the following argument. Both St [X, U ] and Et [X, U,Pd ] may
be expressed as the von Neumann entropy of a mixed state obtained by the operator [	UX]t

applied to a pure state (see equations (7) and (24)). Let us denote the rotated partition by
Y = V XV †, where V is an arbitrary unitary matrix. From the definition of the operator 	X

(6) we have

[	UY]t (ρ) = [	UV XV † ]t (ρ) = V [	V †UV X]t (V †ρV )V † = V [	U ′X]t (ρ ′)V † (38)

where the initial state ρ becomes rotated, ρ ′ = V †ρV , and the evolution U is replaced by
U ′ = V †UV . The von Neumann entropy depends only on the spectrum of density matrix,
so S([	UY]t (ρ)) = S([	U ′X]t (ρ ′). In the case of the entropy St the evolution operator is a
tensor product U = US ⊗ UA, so are the partition X = XS ⊗ 11, and the matrix V = VS ⊗ 11.
Since we choose randomly only VS , the state of the second system is not important. When ρ

is a maximally entangled state so is ρ ′, since these states are invariant under local operations.
Hence we obtain St [Y, U ] = St [X, U ′]. The case of the entropy Et is simpler, since here the
averaging over all initial pure states |α〉 automatically cancels the difference between ρ and
ρ ′. Therefore, the equality Et [Y, U,Pd ] = Et [X, U ′,Pd ] holds. As we can see in both cases
the randomly rotated partition Y is equivalent to the model with an original partition X and the
evolution operator rotated into U ′ = V †UV , where V is a random unitary matrix, generated
according to the Haar measure on U(N). Although the spectra of U and U ′ are equal, the
eigenvectors of U ′ are random, and the operator 	U ′X generates the maximal growth of the
von Neumann entropy �E ≈ min{ln d, ln k}. Here ln d represents the maximal von Neumann
entropy of the mixed state, while the measurement X transforms any pure state into a mixture
with entropy bounded by ln k.

This argument shows that for finite systems taking the supremum over all possible
partitions of unity leads to the maximal allowed growth of both entropies irrespective of
the analysed unitary dynamics U. Note that the upper bound ln d is only slightly larger than
that of the average quantum dynamical entropy of a random unitary matrix U distributed
according to the Haar measure on U(d) [7].

On the other hand, one may pose a question, how to restrict the set of possible partitions,
such that the rate of growth of von Neumann entropy could correspond to the dynamical entropy
of the classical system. To analyse this problem compare the properties of the momentum
partition PP, and the random partition PR in the phase space. To represent the partition member
we make use of the Husimi-like representation,

xj (q, p) ≡ 〈q, p|X†
jXj |q, p〉. (39)

Here |q, p〉 denotes the Gaussian states localized on the torus, the same as in [25, 26]. In figure 3
we show the phase-space representation of two partitions of unity PP = {P1, P2}, and
PR = {V P1V

†, V P2V
†}, each consisting of k = 2 operators. PP denotes the partition

into equal intervals in momentum coordinates and PR is a partition into two subspaces of
equal size determined by a random unitary matrix V . As may be seen in the picture, the
operators P P

1 and P P
2 are by construction localized in the lower (upper) region of the phase

space, while P R
1 and P R

2 are totally delocalized.
These results suggest that in order to predict the decoherence rate �E (and �S) one

should consider only these partitions PC, which have a well-defined classical limit. This is
the case if each of the operators Xj is localized on a subset εj ⊂ 
 of phase space, so in the
classical limit Xj(q, p) → χεj

(q, p), where χεj
denotes the characteristic function of εj .

The above discussion has some important consequences for the decoherence processes in
quantum systems having chaotic classical limits with the KS entropy h[T ] > 0. Namely, if
only the interaction with the environment can be described by a partition of unity having a
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Figure 3. Phase-space representations of partitions PP = {P P
1 , P P

2 } and PR = {P R
1 , P R

2 }
consisting of k = 2 operators. The real function xj (q, p) = 〈q, p|X†

jXj |q, p〉 is plotted in

dark scale, where Xj denotes one of P P
1 , P P

2 , P R
1 , P R

2 . The partition PP corresponds to partition
on the upper and lower halves in momentum coordinates while PR is partition corresponding to
the projections in a a randomly selected basis. Note that the coherent-states representations of P R

1
and P R

2 are delocalized in the phase space.

well-defined classical limit (and ln k � h[T ]) we expect that the decoherence effects give the
entropy production per single time step of the order h[T ] for the generic initial conditions.
The linear entropy increase has to break down for times t of the order of ln d/h[T ] [9].

In contrast, if the partition of unity is chosen randomly and has no well-defined classical
limit we do not expect any restrictions on the entropy production rate, except the general upper
bound �S � ln k, related to the number k of the Kraus operators.

7. Occurrence of free-independent variables

The semiclassical arguments of the previous sections do not explain the striking phenomenon
observed in the numerical computations of St [X, U ] and Et [X, U,Pd ] as presented in
figures 1(a) and (d ) and figure 2. Namely for the two situations:

(a) the quantum system with chaotic classical limit and the semiclassical, projection valued
choice of the partition P = {P1, P2, . . . , Pk}, TrPj = d/k satisfying ln k � h[T ],

(b) nontrivial U and the random choice of the partition P.

St [X, U ] grows almost exactly linearly like t ln k and then rapidly saturates at the maximal
value 2 ln d. The entropy Et [X, U, α] with a random choice of |α〉 follows the same plot up
to its maximal value ln d. This means that in both cases (a) and (b) the correlation density
matrices possess a very special structure corresponding to the maximal admissible entropy,

σ [Pt ]i1,...,it ;j1,...,jt
= d−1 Tr

(
Pj1U

†Pj2U
† . . . Pjt

Pit . . . UPi2UPi1

) � 1

kt
δi1j1 · · · δit jt

(40)
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and similarly for a typical vector |α〉,

σα[Pt ]i1,...,it ;j1,...,jt
= 〈α|(Pj1U

†Pj2U
† . . . Pjt

Pit . . . UPi2UPi1

)|α〉 � 1

kt
δi1j1 · · · δit jt

(41)

under the condition of kt � d.
The simple form of the correlation functions (40) and (41) suggests the existence of

a certain statistical law satisfied by the noncommutative variables {Pj ,U} with respect to
the tracial state or a typical pure state |α〉. This law should be strictly obeyed in the limit
d → ∞ but even for relatively low dimensions reproduces the data with very good accuracy.
Such situations are common in nature. Gaussian and Poisson probability distributions are
very successful in describing experimental data while their rigorous derivations involve limit
theorems with strong statistical independence assumptions.

We advance the following statistical hypothesis:
For both cases (a) and (b) and large Hilbert space dimensions d the operators {A,U}

behave asymptotically like free-independent random variables with respect to the tracial state
or a typical pure state.

Here A is an arbitrary observable with the spectral measure (P1, P2, . . . Pk).
We have to explain now the notion of free independence. In the classical probability

theory (complex) random variables form a commutative ∗-algebra and the probability measure
defines a positive normalized functional f 	→ 〈f 〉, the average value. The random variables
f1, f2, . . . , fn are called statistically independent if

〈f1f2 . . . fn〉 = 〈f1〉〈f2〉 · · · 〈fn〉. (42)

In noncommutative probability the basic object is a unital generally noncommutative ∗-algebra
A with a state (positive normalized functional) φ. Due to the noncommutativity the average
φ(x1x2, . . . , xm); xj ∈ A depends on the order of random variables. Hence, the direct
extension of the definition (42) is not very interesting and essentially corresponds to product
states on tensor product algebras. Instead, in noncommutative probability we have different
notions of independence which take into account possible algebraic relations between random
variables (e.g. CCR, CAR, etc [28]). In the last decade the so-called free families of random
variables (or free independence) introduced by Voiculescu [29, 30] attracted the attention of
physicists mainly due to the relations with random matrices theory.

Denote by w(x) an arbitrary polynomial in noncommutative variables X, Y ∈ A. The
collection of noncommutative random variables x1, x2, . . . , xk is called free independent if

φ(w1(xp(1))w2(xp(2)) · · · wm(xp(m)) = 0 (43)

whenever φ(wj (xp(j)) = 0 and p(j) �= p(j + 1) for all j = 1, 2, . . . , m, and p(j) ∈
{1, 2, . . . , k}.

It has been proved that the Wigner semicircular probability distribution is a consequence
of the central limit theorem for free-independent random variables similar to the origin of
the Gaussian probability distribution in the context of statistically independent commutative
variables. Moreover, the free-independent variables naturally arise as limits of large random
matrices [29, 30]. The consequences of free independence are illustrated by the following
example.

Example. Take a family of orthogonal projections P1, P2, . . . , Pk and a unitary U, all from
the algebra A with the state φ. Assume that for any A = ∑

ajPj the pair of random variables
{A,U} is free independent and moreover

φ(Pj ) = 1

k
j = 1, 2, . . . , k φ(Un) = φ

(
U †n) = 0 n = 1, 2, . . . . (44)
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Then

φ
(
Pj1U

†Pj2U
† · · · Pjn

U †UPim · · · UPi2UPi1

) = δnm

1

kn
δi1j1 · · · δinjn

. (45)

Proof. Put Qj = Pj − 1/k, then

QiQj = δijQi − k−1(Qi + Qj) + δij k
−1 − k−2 φ(Qj) = 0. (46)

Hence the LHS of equation (45) is a linear combination of the terms of the form

φ
(
U †n1

Qk1U
†n2 · · · Um1Qk1U

m2 · · ·) (47)

which due to the freeness and equations (44), (45), are all equal to zero except the terms which
do not contain nontrivial powers of U and U †. This can happen, however, for n = m only. In
this case we can easily prove (45) by induction.

The relation (45) corresponds to the phenomenon observed in the numerical computations
of St [X, U ] and Et [X, U,Pd ], and described by (40) and (41). This justifies our hypothesis
formulated above. In case (b) this hypothesis is not surprising due to the random choice of
the partition and the generic relations between free-random variables and random matrices.
Similarly, we would expect the same phenomenon for the fixed partition and the random choice
of the unitary matrix. On the other hand, for case (a) it seems to be a new characterization of
chaotic quantum systems in terms of ‘quantum-probabilistic’ relations between the dynamics
and the measurement (coarse-graining) procedure. �

8. Concluding remarks

We have analysed the decoherence in an open quantum system, the classical analogue of which
is chaotic. The decoherence may be quantified by the rate of increase of the von Neumann
entropy of the initially pure states. We have found an explicit upper bound for the rate of the
von Neumann entropy given by the partial entropy used to define the ALF-dynamical entropy.
The latter quantity is related to the Kolmogorov–Sinai entropy of the corresponding classical
system. Hence our findings allow us to established a further relation between the speed of
decoherence in open quantum systems and the degree of classical chaos.

Such a relation, demonstrated in several earlier works [9, 12, 15], holds if some additional
assumptions concerning the coupling of the system investigated with an environment (the
measurement process) are made. In particular, we proposed to study the scheme of random
measurements, in which the usual Kraus operators Xi , which represent projectors on some
well-defined fragments of classical phase space, are replaced by operators obtained by random
matrices, X′

i = V XiV
†. In such a case the rate of von Neumann entropy becomes maximal

(with probability one, with respect to the choice of random matrix V ). Thus the decoherence
depends only on the kind of the measurement performed (the number of Kraus operators or
the dimensionality of the system), and is independent of the quantum unitary dynamics U,
and of the degree of chaos (Lyapunov exponent, KS dynamical entropy) of the corresponding
classical system.

From a practical point of view it is therefore natural to ask, for which class of measurement
procedures the relation between classical chaos and the degree of quantum decoherence is still
valid. Although we are not in a position to formulate mathematically rigorous sufficient
conditions, which would imply such a relation, our numerical evidence allows us to advance
the following conjecture. The interaction with an environment induces decoherence related
to the degree of classical chaos, if the measurement (Kraus) operators have a well-defined
classical limit. In other words, the coherent-states representation of each of the Kraus operators
needs to be well localized in certain fragments of the classical phase space.
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More formally, the maximal entropy growth, and its independence of the unitary dynamics,
may be analytically derived from an assumption that unitary operator U and an arbitrary
combination of the projector operators Pi are free independent. Obviously this statement is
of a statistical nature, and does not allow one to draw rigorous conclusions for a concrete
set of projection and evolution operators. The free-random variables approach concerns
entire ensembles of operators and enables us to formulate exact statements concerning the
decoherence rate in the limit of large Hilbert space dimension. Nevertheless, for practical
purposes one may choose a set of arbitrary test states φ, and check whether property (45)
is approximately fulfilled for the analysed unitary map U and measurement P. It is worth
emphasizing that the free-independence condition can be formulated as a condition for a
pair of genuinely quantum objects, an observable and an unitary quantum map, without any
reference to the classical notions. Therefore the idea of quantum chaos may be extended to
systems without obvious classical counterparts or to dynamics which do not satisfy standard
assumptions concerning the spectral fluctuations.
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